Факультет цифрових технологій та автоматизації виробництва
Постійне посилання на розділhttps://dspace.mipolytech.education/handle/mip/11
Переглянути
7 результатів
Результати пошуку
Документ Застосування математичної моделі теплообміну для управління охолодженням злитку у кристалізаторі МБРЗ(ДВНЗ «Приазовський державний технічний університет», 2020) Зубко, А. А.; Койфман, О. О.; Zubko, A. A.; Koyfman, O. O.Виконано аналіз існуючих моделей оцінки теплового стану кристалізатора, діагностики теплових процесів і охолодження злитка. На підставі вивчених методів була поставлена задача запропонувати можливість управління охолодженням злитка в кристалізаторі МБРЗ в реальному часі шляхом розрахунку значення витрати води на підставі математичної моделі з підтримкою певного значення перепаду температур води на вході виході з кристалізатора, з урахуванням корекції за рівнем металу і швидкості розливання. Наводиться алгоритм розрахунку значень витрати води на кристалізатор, заснований на виконанні двох умов: температура на виході з кристалізатора не повинна перевищувати 45°С; швидкість руху води в каналах стінок кристалізатора повинна бути не менше 5 м/с. На підставі запропонованого алгоритму виконано експериментальний розрахунок значень витрати води з урахуванням реальних виробничих умов: перетином злитка, діапазоном номінальних значень рівня металу і швидкості розливання. Наводяться графік залежності значень витрати води від рівня метала, при різних швидкостях розливання. Побудований графік залежності витрати води від швидкості розливання для різних значень перепаду температур води на вході та виході з кристалізатора. Зроблено порівняльний аналіз розрахункових значень витрат води з технологічними. Беручи до уваги дві необхідні умови алгоритму розрахунку, а також реальні виробничі значення витрати води -вибрано оптимальне рекомендоване значення перепаду температур. За результатами дослідження можна стверджувати, що дана математична модель може функціонувати в підпрограмі в АСУ, яка регулює витрату води на основі даних про перепаді температур, підтримки його постійного значення з корекцією за швидкістю розливання і рівню в кристалізаторі. Використання запропонованої системи дозволить на практиці ефективно і оптимально управляти охолодженням кристалізатора, а також уникнути зайвих перевитрат води.Документ Система автоматичного розподілу гарячого дуття по фурмах доменної печі(ДВНЗ «Приазовський державний технічний університет», 2020) Койфман, О. О.; Кулик, К. В.; Сімкін, О. І.; Леонов, І. О.; Koyfman, O. O.; Kulyk, K. V.; Simkin, O. I.; Leonov, I. O.У статті розглянуто актуальне питання про автоматичне регулювання розподілу дуття по фурмах доменної печі. Забезпечення рівномірного розподілу дуття по горну печі дозволяє вирівняти нагрів по його окружності, поліпшити розподіл газових потоків в стовпі шихтових матеріалів і повністю використовувати хімічну і теплову енергію газів. Дослідження існуючих систем розподілу дуття показали причини їх непрацездатності. Це викликано тим, що вимірювальне обладнання, регулюючі пристрої та виконавчі механізми не витримують високих температур. Як вирішення проблеми було запропоновано включити в розробку виконавчих механізмів вуглеволокно, що дозволить значно зменшити абразивний знос і підвищити стійкість до високих температур.Була також розроблена система автоматичного регулювання розподілу дуття по кожній фурмі окремо. Витрата дуття в системі вимірюється за допомогою трубок Вентурі методом змінного перепаду. Регулювання в системі відбувається за допомогою посиленого вуглеволокном метеликового клапана, встановленого в рухомому коліні фурменого приладу після трубки Вентурі. У середовищі об'єктно-орієнтованого програмування було розроблено спеціальне програмне забезпечення для контролю процесу розподілу дуття по фурмам, рівномірного його розподілу і перерозподілу між усіма фурмами. Програма має можливість задавати загальні витрати та витрати на окремо взяту фурму.Використання розробленої системи автоматичного розподілу дуття по фурмам дозволить забезпечити рівномірну подачу дуття в горн доменної печі через окремі фурми, що дозволить підняти продуктивність самої печі призниженні витрати коксу.Документ Автоматизированная система управления нагревом насадки воздухонагревателя доменной печи с возможностью регулировании содержания кислорода в воздухе горения(ДВНЗ «Приазовський державний технічний університет», 2020) Койфман, А. А.; Король, М. О.; Симкин, А. И.; Койфман, О. О.; Король, М. О.; Сімкін, О. І.; Koyfman, O. O.; Korol, M. O.; Simkin, O. I.Температура доменного дутья в значительной степени определяется температурой под куполом воздухонагревателей. Исследовано влияние содержания кислорода в обогащенном воздухе, идущего на горение в горелке воздухонагревателя доменной печи, на повышение температуры купола, а, следовательно, и повышение температуры горячего дутья. Приведены основные формулы расчета горения при обогащении в общем виде. С увеличением содержания кислорода в обогащенном воздухе растет температура горения газа и при этом уменьшается количество продуктов горения, что непосредственно повлияет на скорость нагрева купола и насадки. Для компенсации снижения теплообмена в насадке необходимо увеличивать расход доменного газа. При повышении содержания кислорода в воздухе горения с 21 до 50% наблюдается повышение калориметрической температуры горения доменного газа с 1451 до 1821°С, а температуры горения -с 1306 до 1639°С.С использованием архивной базы данных за 7 месяцев системы автоматического управления блока доменных воздухонагревателей металлургического комбината былпроведен расчет основных показателей работы блока с повышенным содержанием кислорода в воздухе горения. Повышение содержания кислорода с 21 до 30% может увеличить температуру дутья на 100 °С, что позволит снизить расход кокса и повысить производительностьработы доменной печи.Разработана система автоматического управления температурой купола воздухонагревателя с возможностью регулирование содержания кислорода в воздухе горения. Использование предложенной системы даст возможность более гибко регулировать температуру купола за счет изменения содержания кислорода воздухе горения и расхода доменного газа.Документ Моделювання теплових процесів парогенератора АЕС для інформаційної технології оптимізації управління(Національний технічний університет "Харківський політехнічний інститут", 2021) Нікуліна, О. М.; Северин, В. П.; Коцюба, Н. В.; Бубнов, А. І.; Nikulina, O. M.; Severyn, V. P.; Kotsuba, N. V.; Bubnov, A. I.Розроблені математичні моделі теплових процесів у формі Кошів просторі стану з відносними змінними парогенератора ПГВ-1000енергоблоку атомної електричної станції з ядерним реактором ВВЕР-1000для використання моделей в інформаційній технології оптимізації управління парогенератором. Розглянуто робочі теплові процеси в парогенераторі ПГВ-1000, які пов’язані з підведенням до нього живильної води від системи водяної підготовки і теплоносія від ядерного реактора та відведенням пари у головний паровий колектор. Представлена розрахункова схема парогенератора, яка відображає робочі процеси в ньому під дзеркалом випаровування і над ним. На основі диференціальних рівнянь теплового балансу теплоносія в парогенераторі та в металевих теплообмінних трубках виконане моделювання теплопередачі від теплоносія до живильної води в парогенераторі. Розроблена модель теплопередачі у вигляді лінійної системи диференціальних рівнянь у відносних змінних стану. Розглянуті процеси пароутворення при нагріванні живильної води поверхнею теплопередачі. Складені диференціальні рівняння матеріального і теплового балансів динамічних процесів пароутворення в парогенераторі, які не є рівняннями у формі Коші. Виконані перетворення диференціальних рівнянь матеріального і теплового балансів в парогенераторі до форми Коші. Отримана нелінійна система диференціальних рівнянь балансу пароутворення у відносних змінних стану. Обчислені значення постійних параметрів моделей для парогенератора ПГВ-1000.Математична модель теплових процесів в парогенераторі ПГВ-1000, яка представлена у вигляді системи диференціальних рівнянь і включає процеси теплопередачі та пароутворення, за допомогою інформаційної технології оптимізації дозволить виконати ідентифікацію та оптимізацію системи управління парогенератором.Документ Розробка нелінійної моделі парогенератора АЕС для інформаційної технології оптимізації управління(Національний технічний університет "Харківський політехнічний інститут", 2022) Нікуліна, О. М.; Северин, В. П.; Бубнов, А. І.; Кондратов, О. М.; Nikulina, O. M.; Severyn, V. P.; Bubnov, A. I.; Kondratov, O. M.Парогенератори сучасних енергоблоків атомних електричних станцій є критичними елементами енергоблоків та підлягають модернізації. Ідентифікація моделі парогенератора для оптимізації керування парогенератором є актуальним завданням. Мета даної статті полягає у розробці нелінійної математичної моделі парогенератора у відносних змінних для її використання в інформаційній технології оптимізації управління. Наведено математичні моделі процесів теплопередачі та пароутворення у парогенераторі у вигляді систем диференціальних рівнянь у відносних змінних. Ці моделі призначені для імітаційного моделювання теплових процесів у парогенераторі. Теплові процеси пов'язані з підведенням до парогенератора живильної води від системи водної підготовки та теплоносія від ядерного реактора, а також з відведенням пари з парогенератора до головного парового колектору. За законом збереження кількості руху робочого середовища уциркуляційному контурі парогенератора під дзеркалом випаровування отримано нелінійне диференціальне рівняння процесу циркуляції пароводяної суміші. Розроблено нелінійне диференціальне рівняння для обчислення похідної витрати пари через дзеркало випаровування у відносних змінних. Рівняння допоміжного обладнання –головного парового колектору, приводу клапана парової турбіни та виконавчого механізму регулюючого живильного клапана приведено до відносних змінних. З використанням рівнянь теплопередачі, пароутворення, циркуляції та допоміжного обладнання побудовано нелінійну модель парогенератора у просторі станів як об'єкта управління у відносних змінних. Наведено формули для обчислення значень постійних параметрів моделі парогенератора за значеннями конструктивних і технологічних параметрів. Розроблено програму для нелінійної математичної моделі парогенератора ПГВ-1000, яка включена в модуль моделей парогенераторів інформаційної технології. Це дозволить вирішити завдання ідентифікації та оптимізації інформаційної керуючої системи рівня води у парогенераторі ПГВ-1000 енергоблоку з ядерним реактором ВВЕР-1000.Документ Методологія організації аналізу і контролю фінансової звітності бюджетних установ(Причорноморський науково-дослідний інститут економіки та інновацій, 2018) Рекова, Н. Ю.; Кононенко, О. Л.; Rekova, N. Yu.; Kononenko, O. L.У статті удосконалено методологію організації аналізу та контролю фінансової звітності бюджетних установ, яка ґрунтується на гіпотезі про створення такої системи аналізу та контролю фінансової звітності бюджетної установи, яка надавала би можливість максимізувати позитивні екстерналії діяльності та управлінських рішень бюджетних установ для досягнення державних інтересів у бюджетній політиці. Сформовано принципи, функції, методи методології організації аналізу і контролю фінансової звітності бюджетних установ, що у сукупності мають сприяти своєчасному та якісному прийняттю управлінських рішень в бюджетному процесі на основі систематизованої інформації, зростанню транспарентності органів державного управління та самоврядуванні, забезпеченню зрозумілості фінансових показників бюджетних установ для іноземних користувачів фінансової звітності в умовах її гармонізації є європейськими вимогами.Документ Стан контролю фінансової звітності бюджетних установ України(Причорноморський науково-дослідний інститут економіки та інновацій, 2018) Рекова, Н. Ю.; Кононенко, О. Л.; Rekova, N. Yu.; Kononenko, O. L.У статті проведено аналіз результатів державного контролю бюджетних установ, який дозволив констатувати, що кількість фактів фінансових порушень за спецфондом бюджетних установ останні п’ять років має стійку тенденцію до зниження. Разом з тим, їх обсяг знижується лише останні три роки. З 2018 р. Державною аудиторською службою України почала оприлюднюватися інформація що аудиту та контролю фактів неефективних управлінських дій (рішень) або ризикових операцій, що призвели або можуть призвести до втрат фінансових і матеріальних ресурсів у бюджетних установах і організаціях. Превентивний контроль посів визначальне місце у всій системі контролю та упередження зайвих втрат бюджетних коштів. На сьогодні у бюджетних установах слабко розвинута система внутрішнього контролю, зокрема оцінка ризиків, передбачена міжнародними стандартами аудиту, реалізується на низькому рівні.