A scientific study on fraud detection in electronic payments using machine learning methods
dc.contributor.author | Shmatko, O. V. | |
dc.contributor.author | Antypin, I. | |
dc.contributor.author | Шматко, О. В. | |
dc.date.accessioned | 2025-08-29T09:32:33Z | |
dc.date.issued | 2025 | |
dc.description.abstract | Electronic payment systems have transformed financial transactions, offering efficiency and convenience. However, with their increasing adoption, the risks of fraudulent activities have grown. Fraudsters exploit vulnerabilities in digital payment platforms, necessitating the development of sophisticated fraud detection mechanisms. Traditional security measures are often reactive rather than proactive, making them inadequate in preventing real-time financial crimes. | |
dc.identifier.citation | Shmatko O. V., Antypin I. A scientific study on fraud detection in electronic payments using machine learning methods. Modern Science, Economy and Digital Innovation : Collection of Scientific Papers 2nd International Scientific and Practical Conference (March 12-14, 2025 Bucharest, Romania). 2025. Р. 70- 73. | |
dc.identifier.citation | Shmatko, O. V., Antypin, I. (2025). A scientific study on fraud detection in electronic payments using machine learning methods. Modern Science, Economy and Digital Innovation : Collection of Scientific Papers 2nd International Scientific and Practical Conference (March 12-14, 2025 Bucharest, Romania), 70- 73. | |
dc.identifier.uri | https://dspace.mipolytech.education/handle/mip/2358 | |
dc.language.iso | en | |
dc.publisher | International Scientific Unity | |
dc.title | A scientific study on fraud detection in electronic payments using machine learning methods | |
dc.type | Thesis |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- A scientific study on fraud detection in electronic payments using machine learning methods.pdf
- Розмір:
- 588.41 KB
- Формат:
- Adobe Portable Document Format
Ліцензійна угода
1 - 1 з 1
Вантажиться...
- Назва:
- license.txt
- Розмір:
- 10.29 KB
- Формат:
- Item-specific license agreed to upon submission
- Опис: