Кафедра цифрових технологій та проєктно-аналітичних рішень (ЦТПАР)
Постійне посилання колекціїhttps://dspace.mipolytech.education/handle/mip/22
Переглянути
2 результатів
Результати пошуку
Документ Дослідження нейронних мереж для прогнозування вартості акцій компаній у нестабільній економіці(Національний технічний університет "Харківський політехнічний інститут", 2022) Москаленко, В. В. ; Санталова, А. Р.; Фонта, Н. Г.; Moskalenko, V. V. ; Santalova, A. R.; Fonta, N.Дані дослідження присвячені аналізу і вибору нейронних мереж різної архітектури та гібридних моделей, до яких включені нейронні мережі, для прогнозування ринкової вартості акцій на фондовому ринку країни, яка перебуває у процесі нестабільного розвитку. Аналіз та прогнозування таких фондових ринків не може бути проведено з використанням класичних методів. Актуальність теми дослідження зумовлена необхідністю розробки програмних систем, які реалізують алгоритмічне забезпечення прогнозування ринкової вартості акцій в Україні. Впровадження таких програмних систем до контуру прийняття інвестиційних рішень у компаніях, які зацікавлені у підвищенні інформаційної прозорості фондового ринку України, дасть можливість покращити прогнози щодо ринкової вартості акцій. Це у свою чергу сприятиме покращенню інвестиційного клімату та забезпечить зростання інвестування в українську економіку. Проведено аналіз результатів існуючих досліджень щодо використання нейронних мереж та інших методів обчислювального інтелекту для моделювання поведінки учасників фондового ринку та прогнозування ринку. У статті надано результати дослідження щодо використання нейронних мереж різної архітектури для прогнозування ринкової вартості акцій на фондових ринках України. Для прогнозування було обрано чотири акції Української фондової біржі: Центренерго (CEEN); Укртелеком (UTLM); Крюківський Вагонобудівний Завод ПАТ (KVBZ); Райффайзен Банк Аваль (BAVL). Для експериментального дослідження були обрані такі моделі: довга короткострокова пам’ять LSTM; згорткова нейронна мережа CNN; гібридна модель, яка поєднує дві нейронної мережі CNN і LSTM; гібридна модель, що складається з алгоритму декомпозиції варіаційного режиму та нейронної мережі довгострокової пам’яті (VMD-LSTM); гібридна модель VMD-CNN-LSTM глибокого навчання на основі варіаційного режиму (VMD) та двох нейронних мереж. Розраховано оцінки якості прогнозу за різними метриками. Зроблено висновок, що використання гібридної моделі VMD-CNN-LSTM дає мінімальну помилку прогнозування ринкової вартості акцій українських підприємств. Також доцільно використовувати модель VMD-LSTM для прогнозування на біржах країн з нестабільною економікою.Документ The value of shares prediction in an unstable economy using neural networks(CEUR Workshop Proceedings, 2022) Moskalenko, V. V.; Santalova, A. R. ; Fonta, N.; Nikulina, O. M.; Москаленко, В. В.; Нікуліна, О. М.The relevance of this research topic is due to the need to develop algorithmic provision of the market value forecasting for shares in Ukraine and the introduction of the concept for increasing information transparency of the domestic stock market. All this will help improve the investment market, provide investment and development of Ukrainian companies and the economy as a whole. An analysis of researchon the use of methods for computational intelligence, including neural networks to model the behavior of stock market participants and solve the problem of forecasting. A study was conducted based on using neural networks of different architecture to predict the market value of shares in the stock markets of Ukraine, which are in the process of formation and development. The following models of neural networks were chosen for experimental research: Long short-term memory; Convolutional neural network; a hybrid model that combines two neural network architectures CNN and LSTM; a hybrid model consisting of a variational mode decomposition algorithm and a long-term memory neural network (VMD-LSTM). Four shares of the Ukrainian Stock Exchange were selected forforecasting: Tsentrenergo (CEEN); Ukrtelecom (UTLM); Kriukivs’kyi Vahonobudivnyi Zavod PAT (KVBZ); Raiff Bank Aval (BAVL). Estimates of forecast quality are calculated. It was concluded that it is advisable to use the LSTM network to forecast stocks that are on the stock exchanges of countries with unstable economies.