Object classification in road traffic using machine learning: state-of-the-art approaches and future directions

dc.contributor.authorShmatko, O. V.
dc.contributor.authorShpigunov, A.
dc.contributor.authorШматко, О. В.
dc.date.accessioned2025-08-29T09:26:24Z
dc.date.issued2025
dc.description.abstractThe rapid growth of urban populations and the increasing complexity of transportation networks have amplified the demand for intelligent traffic management systems. Among the critical components of such systems is the accurate and efficient classification of objects in road traffic environments, including vehicles, pedestrians, cyclists, and various roadside entities. The ability to reliably identify and distinguish these objects is fundamental for applications such as autonomous driving, traffic monitoring, infrastructure planning, and road safety enhancement.
dc.identifier.citationShmatko O. V., Shpigunov A. Object classification in road traffic using machine learning: state-of-the-art approaches and future directions. Global Trends in the Development of Information Technology and Science : Collection of Scientific Papers 3rd International Scientific and Practical Conference (April 2-4, 2025 Stockholm, Sweden). 2025. Р. 87-92.
dc.identifier.citation Shmatko, O. V., Shpigunov, A. (2025). Object classification in road traffic using machine learning: state-of-the-art approaches and future directions. Global Trends in the Development of Information Technology and Science : Collection of Scientific Papers 3rd International Scientific and Practical Conference (April 2-4, 2025 Stockholm, Sweden), 87-92.
dc.identifier.urihttps://dspace.mipolytech.education/handle/mip/2355
dc.language.isoen
dc.publisherInternational Scientific Unity
dc.titleObject classification in road traffic using machine learning: state-of-the-art approaches and future directions
dc.typeThesis

Файли

Контейнер файлів

Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
Object classification in road traffic using machine learning state-of-the-art approaches and future directions.pdf
Розмір:
546.37 KB
Формат:
Adobe Portable Document Format

Ліцензійна угода

Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
license.txt
Розмір:
10.29 KB
Формат:
Item-specific license agreed to upon submission
Опис: