Перегляд за Автор "Бруй, Г. В."
Зараз показуємо 1 - 20 з 26
- Результатів на сторінці
- Налаштування сортування
Документ Angular measurement errors in underground mine surveying reference networks(Державний університет "Житомирська політехніка", 2024) Nazarenko, V. O.; Brui, H. V.; Krivoruchko, А. O.; Levytskyi, V. H.; Назаренко, В. О.; Бруй, Г. В.; Криворучко, А. О.; Левицький, В. Г.Surveyorʼs reference networks are the main geometric basis of all underground surveys and consist of polygonometric courses laid, as a rule, along capital and main mine workings. When laying polygons along mine workings, horizontal angles between each two adjacent sides of the course, inclination angles and lengths of the course sides are measured. Each measurement is performed with some error, which eventually leads to errors in determining the coordinates of polygon points. The peculiarities of underground polygonometric courses due to their forced configuration determined by mine workings, the presence of forced short sides and a limited number of starting points, contribute to the rapid accumulation of errors in the course as the distance from the starting points. The accuracy of measurements in the polygonometric passes, laid in the construction of underground reference networks, is characterized by the general normative indicators: the mean square error of measurement of horizontal angles of 20", vertical angles – 30". According to the requirements of the current normative instructions, the measurement of angles in underground polygonometric passages should be made with theodolites of T15 type or theodolites with the accuracy of the reference device not less than 15". The last requirement applies to theodolites of T30 type. In polygonometric moves laid along the mine workings with an angle of inclination of less than 30 °, the angles are measured in one repetition or reception. Measurement of angles in mine workings with an inclination angle of more than 30 ° is recommended to perform a method of techniques (at least two), observing the following rule: before each technique set the vertical axis of rotation of the theodolite in a plumb position and re-centering the device. If we proceed only from the instrumental component of the total error of angle measurement to ensure the mean square error of horizontal angle measurement ±20" theodolite type T15 should perform angle measurement in one full method, and theodolite T30 – in three methods. Instrumental error of angle measurement is caused by errors of sighting, counting, eccentricity of the limb and alidade, incorrect geometry of the horizontal circle, non-verticality of the theodolite rotation axis. The studies of errors in measuring horizontal angles in underground surveyorʼs polygonometric courses made it possible to draw the following conclusions: – the recommendations of the instruction «Surveying work at coal mines and surface mines» on the use of theodolites with a readout accuracy of 15" does not provide the required accuracy of horizontal angle measurements; – when using theodolites of T15 type to measure the angle with sides up to 20 m it is necessary to use only automatic centering of theodolite and signals; The scientific paper contains charts for determining the ways of centering and the number of methods of measuring horizontal angles in underground surveyorʼs polygonometric moves.Документ Determination of design indicators of earth surface deformations for mineable buildings and structures(Інститут геотехнічної механіки ім. М.С. Полякова НАН України, 2023) Nazarenko, V. O.; Brui, H. V.; Kuchin, O. S.; Назаренко, В. О.; Бруй, Г. В.; Кучин, О. С.Coal is one of the main sources of energy in Ukraine. Underground coal mining is concentrated in the ar-eas of Eastern and Central Donbas, Western Donbas, and in the Lviv-Volyn region. Development of coal seams leads to displacement of rocks and uneven subsidence of the surface. Surface movements and deformations cause serious damage to the environment. They affect residential and industrial infrastructure, and can cause destruction or disruption of operating conditions. Risks to surface structures can be reduced by predicting subsidence and surface deformation over underground workings. In Ukraine, the method of typical subsidence and deformation distribution functions is used for forecasting. This is a simple and universal method, but it does not take into account the differences in deformations in different zones of the shear trough depending on the direction of movement of the face. For this reason, incorrect predic-tive estimates of the impact of mining operations on the earth's surface, man-made natural, industrial and civilian objects arise. This paper presents a methodology for determining the estimated deformations of the foundations of civilian build-ings that are being faked, taking into account the assessment of the estimated impact of mining operations, which takes into account the peculiarities of the formation of the shear trough in space and time. This methodology was developed to supplement and clarify the "Temporary technical conditions for the protection of structures and natural objects from the impact of underground mining operations. KD 12.00159226.013-95" for the conditions of underground mining of coal seams in the Western Donbas, as well as other deposits with similar conditions and parameters of the earth surface displacement process. It is based on modern concepts of rock and earth surface movements during underground mining of coal seams with horizontal and gentle rock occurrence; results of analysis of numerous instrumental surveying obser-vations, including frequency ones, at observation stations of mines in Western Donbas. The obtained regularities allow for a more objective selection and application of protection measures for civil buildings. This reduces the risks during the operation of buildings, makes it possible to plan repair and restoration work, and to make a rea-sonable assessment of buildings and territories in the real estate market.Документ Impact of ground surface subsidence caused by underground coal mining on natural gas pipeline(Springer Nature, 2023) Bazaluk, O.; Kuchyn, O.; Saik, P.; Soltabayeva, S.; Brui. H. V.; Lozynskyi, V.; Cherniaiev, O.; Бруй, Г. В.Underground mining of minerals is accompanied by a change in the rock mass geomechanical situation. This leads to the redistribution of stresses in it and the occurrence of unexpected displacements and deformations of the earth’s surface. A significant part of the civil and industrial infrastructure facilities are located within the mine sites, where mining and tunneling operations are constantly conducted. Irrational planning of mining operations can lead to loss of stability and destruction of undermined facilities. Therefore, it is important to study the earth’s surface deformation processes during mining operations, which ensures safe and sustainable operating conditions. The research objective of this paper is to analyse the behaviour of a natural gas pipeline under the influence of underground mining activities, with a particular focus on understanding the effects of horizontal surface deformations and their potential impact on pipeline safety and structural integrity. Its performance and safety are determined on the basis of the found parameters of the earth’s surface horizontal deformations and their comparison with permissible parameters characterizing the conditions for laying pipelines, depending on the mining-geological conditions and the degree of their undermining. Based on determined conditions for the safe undermining of the natural gas pipeline, it has been revealed that in its section between the PK212+40 and PK213+80 (140 m) pickets, the estimated parameters of the earth’s surface horizontal deformations exceed their permissible values. This can cause deformation and damage to the pipeline. For the safe operation of the pipeline during the period of its undermining, in order to eliminate the hazardous impact of mining the longwall face, additional protection measures must be applied. It is therefore recommended that the gas pipeline between the PK212 and PK214+20 pickets be opened prior to the displacement process (200 m from the stoping face), thus reducing the density of the gas pipeline-soil system. Recommendations for controlling the earth’s surface deformations within the natural gas pipeline route are also proposed, which will ensure premature detection of the negative impact of mining operations.Документ The relationship between lowering the earth's surface and bearing pressure above the advancing longwall face(Національний університет "Львівська політехніка", 2023) Kuchin, O.; Brui, H. V.; Yankin, O.; Ishutina, H.; Бруй, Г. В.This work aims to develop a method for determining the increase in stresses above an advancing longwall face of Western Donbas mines. The paper presents a solution to the problem. It is based on the analysis of geodetic instrumental observations of the earth's surface lowering and rock mass deformation above the advancing longwall face. Length and propagation in the roof and floor of the extracted seam are the main geometrical parameters of the zone of high rock pressure. Currently, the quantitative parameters of this zone are not considered. And its length under the conditions of Western Donbas is determined with an accuracy of 50%. Thus, research in this direction is relevant. The experimental basis for the research includes the results of observations performed at two vertical borehole extensometers and the results of data processing obtained at more than 30 observation stations on the Earth's surface. Thus, the research specified the geometrical parameters of the zone of high rock pressure and the nature of the vertical stress distribution within this zone. The paper introduces a method to determine a coefficient of stress increase above the advancing longwall face of Western Donbas mines. We also established the empirical coefficients of the vertical stress distribution function within the abutment pressure zone. There is a relationship between the lowering of the earth's surface and the values of the stress increase in the borehole edge part. The reliability of the obtained results is confirmed by geophysical studies in Western Donbas, as well as by the results of field observations.Документ Аналіз структурних особливостей та геометризація якісних властивостей габроїдних порід східної частини Володарськ-Волинського масиву основних порід Коростенського плутону(Державний університет "Житомирська політехніка", 2024) Криворучко, А. О.; Котенко, В. В.; Горшкальов, С. А.; Бруй, Г. В.; Kryvoruchko, A. O.; Kotenko, V. V.; Horshkalov, S. A.; Brui, H. V.У роботі здійснено геометризацію габроїдів східної частини Володарськ-Волинського масиву основних порід Коростенського плутону на основі визначення просторового розташування, структури та взаємозв’язків різновидів кристалічних порід. У дослідженні використано найсучасніші методи цифрової геометризації. Цифрова геометризація є найсучаснішим методом геометризації геохімічних полів, що використовує комп’ютерні технології для створення цифрових моделей геохімічного поля. Здійснено дослідження просторового розподілу межі міцності на стиск корисної копалини в сухому та зволоженому стані, просторового розподілу показника водопоглинання, рудоносності та виконано оцінку ступеня зміни декоративності. На основі одержаних даних були створені детальні моделі розподілу основних властивостей габроїдів, одержані графічні і аналітичні залежності, що сприяє ефективному плануванню видобування природного каменю. Також було описано внутрішню структуру інтрузивів східної частини Володарськ-Волинського масиву Коростенського плутону. Завдяки одержаним моделям можна покращити точність оцінки запасів, оптимізувати гірничі роботи та знизити витрати на видобування, забезпечуючи при цьому раціональне використання природних ресурсів.Документ Аналітичні дослідження залежності кутових параметрів процесу зрушення в західному Донбасі(ТОВ "ТЕХНІЧНИЙ УНІВЕРСИТЕТ "МЕТІНВЕСТ ПОЛІТЕХНІКА", 2024) Назаренко, В. О.; Бруй, Г. В.; Кучин, О. С.; Nazarenko, V. O.; Brui, H. V.; Kuchin, O. S.Під час підземної розробки вугільних пластів відбуваються незворотні зміни в масиві гірських порід, що оточують вугільний пласт, який розробляється. Ці зміни є наслідком обвалення, осідання та горизонтального зсуву гірських порід над очисною виробкою, перерозподілу напружень у вміщуючих породах та їхнього деформування. Зміни в породному масиві спричиняють порушення земної поверхні над очисною гірничою виробкою, що виражається у зрушенні та деформуванні поверхні. Унаслідок цього на кожному гірничому підприємстві виникають завдання з охорони споруд і природних об’єктів від шкідливого впливу гірничих розробок. Гірниче законодавство України реґламентує, що під час підробки наявних об’єктів необхідно встановити раціональну виїмку вугілля і, за необхідності, застосувати заходи захисту від впливу гірничих виробок. Правила раціонального виймання вугілля передбачають визначення меж зон впливу гірничих виробок і тривалості процесу зрушення земної поверхні; визначення розрахункових і припустимих показників деформацій земної поверхні для об’єктів, що підробляються; встановлення вимог щодо раціонального виймання вугілля і застосування заходів захисту об’єктів, що підробляються, від впливу гірничих виробок. Тією чи іншою мірою питання раціонального виймання вугілля залежать від надійності методів і способів прогнозу зрушень і деформацій земної поверхні, які, своєю чергою, залежать від точності визначення початкових розрахункових параметрів, до яких відносять кутові параметри процесу зрушення. Ці параметри використовуються для визначення розмірів і положення мульди зрушення на земній поверхні та побудови зон небезпечного впливу гірничих розробок. У статті наведені результати аналітичних досліджень залежності кутових параметрів від різних гірничо-геометричних чинників, які вказують на неоднозначність і неналежну точність їх визначення. Сформульовано завдання, розв’язання яких дасть змогу збільшити надійність прогнозування впливу гірничих розробок на будівлі, споруди та природні об’єкти.Документ Геодезія : силабус(ТОВ "ТЕХНІЧНИЙ УНІВЕРСИТЕТ "МЕТІНВЕСТ ПОЛІТЕХНІКА", 2024) Бруй, Г. В.Дисципліна «Геодезія» спрямована на ознайомлення студентів з фундаментальними основами геодезичної науки та набуття ними теоретичної підготовки з питань основних геодезичних вимірювань на земній поверхні, побудови картографічних матеріалів та вирішення різноманітних геодезичних задач. Завданням дисципліни є формування уявлень про форму і розміри Землі, основні лінії і площини еліпсоїда, системи координат, які застосовуються в геодезії, орієнтування напрямків, топографічні карти і плани, картографічні умовні знаки для зображення елементів місцевості, рельєф місцевості.Документ Геометрія надр (Підрахунок запасів) : силабус(ТОВ "ТЕХНІЧНИЙ УНІВЕРСИТЕТ "МЕТІНВЕСТ ПОЛІТЕХНІКА", 2024) Бруй, Г. В.Дисципліна «Геометрія надр. (Підрахунок запасів) спрямована на формування компетентностей щодо визначення кількісних та якісних показників корисної копалини, обгрунтування найбільш прийнятного способу підрахунку запасів в конкретних гірничо-геологічних та гірничотехнічних умовах та здійснення контролю за рухом і станом запасів корисної копалини. В дисципліні розглядаються основні завдання підрахунку запасів, обліку стану і руху запасів у надрах. Вивчаються способи визначення якісних та кількісних характеристик корисної копалини, що відіграють визначальну роль в процесі підрахунку запасів, а також теоретичні основи найбільш застосовуваних способів підрахунку запасів. Розглядаються чинники, що зумовлюють зміну вихідних балансових та позабалансових запасів.Документ Елементи теорії похибок для аналізу точності маркшейдерських вимірювань(Олді+, 2024) Назаренко, В. О.; Бруй, Г. В.У навчальному посібнику розглянуті загальні уявлення про вимірювання і їх точність,види вимірювань і їх похибки, а також структурна схема похибок. Детально висвітлені рівноточні вимірювання, властивості випадкових похибок, принцип арифметичної середини. Дана оцінка точності рівноточних вимірювань, охарактеризованісередньоквадратичні похибки функцій виміряних величин. Оцінена сумісна дія декількох незалежних джерел похибок. Охарактеризовані відносні похибки та похибки округлення. Розглянуті нерівноточні вимірювання і їх точність, загальна арифметична середина і вага нерівноточних вимірювань. Виконаний аналіз точності маркшейдерських кутових і лінійних вимірів. Для студентів за напрямом підготовки 184 «Гірництво».Документ Маркшейдерська справа : силабус(ТОВ "ТЕХНІЧНИЙ УНІВЕРСИТЕТ "МЕТІНВЕСТ ПОЛІТЕХНІКА", 2024) Бруй, Г. В.Мета курсу «Маркшейдерська справа» - формування у майбутнього фахівця з гірництва поглиблених знань з маркшейдерської справи, які безпосередньо пов’язані з виконанням натурних вимірювань і наступних геометричних побудов структури родовища, форми і розмірів тіл корисних копалин в надрах, розміщення в них корисних і шкідливих компонентів, властивостей вміщуючих порід, просторового розташування відкритих та підземних виробок, процесів деформації порід і земної поверхні через гірничі роботи.Документ Маркшейдерський супровід гірничих робіт в небезпечних зонах : силабус(ТОВ "ТЕХНІЧНИЙ УНІВЕРСИТЕТ "МЕТІНВЕСТ ПОЛІТЕХНІКА", 2024) Бруй, Г. В.Особливістю курсу є набуття знань щодо безпечного ведення гірничих робіт на вугільних пластах, небезпечних щодо раптових викидів вугілля, породи і газу і на шахтах, що розробляють пласти, схильні до гірничих ударів. Окремо розглядаються причини прориву води в гірничі виробки та способи їх запобіганню. Для умов відкритих гірничих робіт передбачено визначення коефіцієнтів стійкості бортів кар’єрів і побудова поверхонь сковзання.Документ Маркшейдерський супровід будівництва та спорудження міських підземних споруд : силабус(ТОВ "ТЕХНІЧНИЙ УНІВЕРСИТЕТ "МЕТІНВЕСТ ПОЛІТЕХНІКА", 2024) Бруй, Г. В.Особливістю курсу є поєднання теоретичних норм і правил будівництва міських споруд різного призначення (в тому числі підземних), з практичною складовою – методикою виконання маркшейдерсько-геодезичних робіт, які забезпечують точність відповідного будівництва.Документ Методичні рекомендації до виконання та захисту кваліфікаційної роботи для здобувачів вищої освіти за другим (магістерським) рівнем(ТОВ "ТЕХНІЧНИЙ УНІВЕРСИТЕТ "МЕТІНВЕСТ ПОЛІТЕХНІКА", 2024) Назаренко, В. О.; Бруй, Г. В.Методичні вказівки включають пояснення щодо процедури підготовки, виконання і захисту кваліфікаційної роботи, а також рекомендації і вимоги до її змісту та оформлення. Призначено для здобувачів освіти спеціальності 184 Гірництво другого (магістерського) рівня освіти ОПП «Сучасні методи маркшейдерського забезпечення процесів видобування корисних копалин».Документ Моделювання просторового зміщення точок земної поверхні за результатами геодезичних спостережень(Київський національний університет будівництва і архітектури, 2023) Кучин, О.; Бруй, Г. В.; Янкін, О.; Kuchin, O.; Brui, H. V.; Yankin, O.Наведено результати геодезичних (маркшейдерських) спостережень та результатів тривимірного моделювання зрушень земної поверхні на спостережній станції, закладеній над очисними роботами 124-ї лави шахти «Благодатна» у Західному Донбасі (Україна). Для визначення зрушень та деформацій ґрунтові репера профільних ліній координувалися за допомогою GNSS - приймача та електронного тахеометра з точністю їх просторового положення 4-5 мм. Побудовано просторові 3D - моделі зміщення точок земної поверхні в зоні впливу гірничих робіт. За їх допомогою розв’язувати задачі щодо встановлення фактичних величин зрушень та деформацій земної поверхні на підроблюваних територіях. 3D-модель зрушення точок земної поверхні, спрогнозована за методикою діючих державних стандартів України, надає можливість оцінювати вплив підземних очисних гірничих робіт на екологічну ситуацію району підробки та безпеку функціонування цивільних та промислових споруд у небезпечній зоні.Документ Наукове та інженерне обґрунтування шляхів підвищення ефективності руйнування гірських порід при видобуванні твердих корисних копалин. Етап 1. Аналіз та узагальнення теоретичних основ і досвіду руйнування гірських порід. Дослідження параметрів руйнування гірських порід та обґрунтування їх раціональних значень(ТОВ "ТЕХНІЧНИЙ УНІВЕРСИТЕТ "МЕТІНВЕСТ ПОЛІТЕХНІКА", 2024) Каменець, В. І.; Григор’єв, І. Є.; Бруй, Г. В.; Григор’єв, Ю. І.; Крупко, І.; Кушнірук, Н.; Левченко, К. А.; Назаренко, В. О.; Орлінська, О.; Пілюгин, В.; Сахно, І. Г.; Сахно, С. В.; Швець, Є. М.; Герасимчук, О.; Красуля, О.; Новіков, М.; Систєров, О.; Слюсар, С.; Смірнов, О.; Яковенко, С.Об’єкт дослідження – технологічні процеси руйнування гірських порід та гірниче обладнання. Мета роботи – підвищення ефективності руйнування гірських порід при видобуванні твердих корисних копалин. Предмет дослідження: показники ефективності процесу руйнування гірських порід, підготовки їх до виймання та параметри гранулометричного складу подрібненої маси.Документ Новітні маркшейдерсько-геодезичні технології та прилади : силабус(ТОВ "ТЕХНІЧНИЙ УНІВЕРСИТЕТ "МЕТІНВЕСТ ПОЛІТЕХНІКА", 2024) Бруй, Г. В.Особливістю курсу є отримання поглиблених знань та умінь щодо використання сучасних маркшейдерсько-геодезичних приладів та освоєння програмних продуктів обробки результатів спостереження при вирішенні різних завдань маркшейдерії та геодезії для ефективної та продуктивної роботи на посаді дільничого маркшейдера гірничодобувних підприємств з відкритим та підземним видобутком корисної копалини.Документ Проєктування та дослідження точності підземних маркшейдерських мереж : силабус(ТОВ "ТЕХНІЧНИЙ УНІВЕРСИТЕТ "МЕТІНВЕСТ ПОЛІТЕХНІКА", 2024) Бруй, Г. В.; Назаренко, В. О.Дисципліна спеціальної підготовки «Проєктування та дослідження точності підземних маркшейдерських мереж» є обов’язковою для вивчення за освітньо-професійною програмою «Сучасні методи маркшейдерського забезпечення процесів видобування корисних копалин» і спрямована на набуття компетентностей в сфері маркшейдерського супроводження підземної та відкритої розробки родовищ корисних копалин і геобудівництва з метою надання повної уяви про опорні та знімальні маркшейдерські мережі на гірничих підприємствах, що виконують видобування корисної копалини різними технологіями.Документ Робоча програма з навчальної дисципліни «Маркшейдерська справа»(ТОВ "ТЕХНІЧНИЙ УНІВЕРСИТЕТ "МЕТІНВЕСТ ПОЛІТЕХНІКА", 2024) Бруй, Г. В.Особливістю курсу є опанування методик маркшейдерського супроводу роботи гірничодобувних підприємств з відкритим та підземним видобутком корисної копалини. Дисципліна є вибірковою для вивчення магістрамиОПП «Новітні технології розробки родовищ корисних копалин», «Технології підземної розробки родовищ», «Технології відкритої розробки родовищ». Отримані знання будуть використані в професійній діяльності спеціаліста-гірника при роботі в технологічній службі шахти, проектуванні і плануванні розвитку гірничих робіт, науково-технічних організаціях.Документ Робоча програма навчальної дисципліни «Геодезія»(ТОВ "ТЕХНІЧНИЙ УНІВЕРСИТЕТ "МЕТІНВЕСТ ПОЛІТЕХНІКА", 2024) Бруй, Г. В.Дисципліна «Геодезія» спрямована на ознайомлення студентів з фундаментальними основами геодезичної науки та набуття ними теоретичної підготовки з питань основних геодезичних вимірювань на земній поверхні, побудови картографічних матеріалів та вирішення різноманітних геодезичних задач. Завданням дисципліни є формування уявлень про форму і розміри Землі, основні лінії і площини еліпсоїда, системи координат, які застосовуються в геодезії, орієнтування напрямків, топографічні карти і плани, картографічні умовні знаки для зображення елементів місцевості, рельєф місцевості. Оволодіння цим ОК дозволить студентам навчитися: розв’язувати інженерні задачі на топографічних планах і картах; виконувати польові вимірювання теодолітами та нівелірами; будувати геодезичні мережі та виконувати їх польове та камеральне опрацювання; виконувати топографічне знімання місцевості та за його результатами будувати картографічні матеріали.Документ Робоча програма навчальної дисципліни «Геометрія надр» (Підрахунок запасів)(ТОВ "ТЕХНІЧНИЙ УНІВЕРСИТЕТ "МЕТІНВЕСТ ПОЛІТЕХНІКА", 2024) Бруй, Г. В.Особливістю курсу є використання в практичних роботах оперативної інформації про стан гірничих робіт і фактичні якісні властивості корисної копалини, що отримані з маркшейдерських та геологічних замірів. Деякі розрахунково-графічні роботи передбачено виконувати на основі реальних планів гірничих робіт підприємств Групи МЕТІНВЕСТ.